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Abstract

Image-to-image translation, often referred to as style transfer or im-
age domain mapping is a technique that often uses generative adversarial
networks to recreate one image in the ”style” of another. In this paper, I
explore different techniques for style transfer and outline the advantages
of CycleGAN and DualGAN. Then, training a model with an implemen-
tation of each system is detailed. The paper focuses on qualitative results
framed for the specific scenario of a studio looking to reduce their work
load with incorporation of style transfer.

1 Image-to-image translation: An introduction

Image-to-image translation is a problem in computer science that has recently
had major breakthroughs. The goal of an image-to-image translation is to take
an image of one domain, and render it in the ”style” of another domain. The
problem I propose is as follows:

An art studio does not have the resources to employ several
artists, but they have customers who are always requesting paint-
ings of different styles from a reference image. How can the studio
produce new stylistically pleasing images from the given reference
image without hiring artists experienced in different art styles?

One of the greatest challenges with such a translation is producing an image
that is of the same context as the input. A common problem with methods for
translation is an output image that does not seem to correspond to the original
image. Since our problem is about customized artwork, it is of significant value
to produce an output that corresponds to the input for the sake of the customer.

The proposed problem will be treated as a thought problem instead of a
real-life issue to solve. The purpose of framing this as so is to create a clear con-
nection to the applications of the outlined generative adversarial networks and
outline the merits and issues that come along with several different techniques
for image-to-image translation.
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2 Generative adversarial networks

A generative adversarial network (GAN), is a system for generating mappings
between two domains. Two neural networks play distinct roles in a zero sum
game. One net acts as the ”generator” sometimes colloquially referred to as the
”artist”. The other net judges how well the generated content matches a par-
ticular domain, and is often referred to as the ”generator”. The two adversarial
nets work against each other [3]. The artist tries to fool the judge with output
that passes for a genuine member of a class or domain, while the judge tries to
reject the output of the artists.

Applications of GANs are continually expanding, but many practical uses
have already been discovered. Some uses include generating realistic training
data to improve classification performance [8], image-to-image translation [5, 9,
11, 8], increasing the resolution of images [6], and synthesizing images from text
descriptions [10].

In this paper, I focus on a special implementation of GAN that uses more
than two networks to generate forward and backward mappings. Thus an im-
age can be translated between domains in either direction. There are many
such GAN systems that have such a system. In this paper, I will compare dif-
ferent GAN implementations and describe why I think CycleGAN is the best
implementation for our proposed problem.

3 Cycle-consistent adversarial networks

In Zhu et al. [11], a way to expand upon the pix2pix framework designed for
isola et al. [5] is described. A CycleGAN works similarly, however, it also
attempts to minimize what is called the cycle-consistency loss. It also avoids
the need for paired image examples in its training set . So let there be two
functions, G(x) and F (y). G takes as input x, and generates a result, ŷ. F
takes as input y, and generates a result x̂, such that F (G(x)) ≈ x. Thus, four
neural networks (two pairs of discriminator and generator) are required to train
two models. The cycle loss is calulated as follows:

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1] + Ey∼pdata(y)[‖G(F (y))− y‖1] (1)

The original implementation of CycleGan is from Zhu et al.’s [11] paper,
and is written in both Torch and PyTorch. Since, there have been many imple-
mentations, including a Keras implementation [8]. For this paper, the original
Author’s PyTorch version is used on Google’s Cloud Platform with a Tesla K80
24GB GPU, and our models are trained over 200 epochs.

4 DualGAN

DualGAN [9] is the most similar to CycleGAN. In Yi et al., the concept of
reconstruction loss of a twice translated image is proposed. This method is de-
scribed as more or less identical to the cycle-consistency loss in CycleGAN. Like
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CycleGAN, DualGAN is also able to perform well with small, unpaired, unla-
beled data sets, reliant on the reconstruction loss. Aside from the calculation
of their loss functions, DualGAN and CycleGAN are very similar and perform
with similar results. You can tell their similarity by viewing the fundamental
shared calculation in the differences between reconstruction/cycles:

ldA(u, v) = DA(GA(u, z))−DA(v) (2)

ldB(u, v) = DB(GB(v, z
′
))−DB(u) (3)

If you segment the cycle loss calculation, you will see these are essentially
the same. Both loss functions find the difference between the original and the
reconstruction for each cycle.

5 Misrepresenting Losses

CycleGAN and DualGAN both rely on cycled losses to base the generator’s
performance. This performs quite well at ensuring the model does not produce
output that defers too much from the input. However, the final reconstruction
F (G(x)) can be deceptively accurate. Outlined in Chu et al. [2], a rendered
reconstruction looks so similar to the real one because each cycle hides informa-
tion about the original image in the output. This becomes abundantly obvious
when looking at maps to satellite reconstructions. How could the model know
the color of building roofs if not through steganography? This creates two prob-
lems: it makes it harder for us to understand quantitatively how well the model
is performing, and it tells us there is noise in our image that only exists because
it makes the image reconstruction decipherable by the model. For this reason,
we consider the appeal of the output image to an individual more so than the
calculated reconstruction error.

6 Similar Techniques

6.1 Conditional Adversarial Networks

Generative adversarial networks have been shown to be quite powerful with
content generation. Image generation is a common representation of its perfor-
mance and capabilities. A conditional adversarial network requires a pairing of
images A and A′, where A′ represents the desired translation to make up its
training data set [5]. In Isola et al. [5], the example of satellite maps is used,
because it is easy to find satellite images and generated road maps to use as A
and A′.

6.2 Image Analogies

An Image Analogy [4] is a method for translating an image from a pair of im-
ages with the applied filter of interest. So given three images, A, A′ and B,
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Figure 1: [11] Reconstructions of images from original. When mapping from
images of higher entropy to images of lower entropy, the cycle loss ensures that
information describing the original image is hidden in the output. This is how
the reconstruction is able to so accurately render the original input. Originally
made by Zhu et al.

where A′ is the result of filtering A, we would have the following relationship:
A : A′ :: B : B′. Unlike other outlined techniques, image analogies are not
adversarial networks. Image analogies have very compelling results in a wide
array of applications that would be similar to that of CycleGAN and/or Dual-
GAN including texture synthesis, super-resolution, and artistic style transfer.
Image Analogies were one of the first techniques for style transfer and has many
distinct advantages such as its requirement for only one paired set of images.

6.3 StarGAN

All the discussed systems thus far have been for one-to-one mappings from
one domain to another. StarGAN [1] is unique in that it can generate many
domain mappings from a single generator. This could be applicable to our
proposed problem because it would reduce training time, and we can assume
that ultimately we will have to produce many domain mappings for outputting
images of different styles. However, such a generator would require that it be
re-trained any time a new mapping is desired. This makes it less flexible for our
current application. Another advantage of CycleGAN previously mentioned is
its ability to preserve the context, which is essential for solving the proposed
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problem. StarGAN requires an unpaired data set, which is important because
a paired data set for multiple domains would be extremely difficult to gather.

7 Comparison

One of the advantages of using an adversarial network like CycleGAN is that it
is more flexible in its applications. The trade-off is the time it takes to get such
a model tuned and trained. Unlike an adversarial network, an image analogy
would only require two reference images. Since these two reference images must
be a paired mapping between the two domains, this makes it difficult or often
impossible to obtain in many scenarios. If we want to map a photograph to a
Van Gogh self-portrait, we would have to resurrect Van Gogh! The applications
of both adversarial networks and image analogies are similar, but the data
requirements can be different. The most important difference for our application
is the data set of unpaired images. As described in Hertzman et al. [4] a human
with experience would be needed to select and prepare the pair of images, A
and A′. The same is true for a conditional adversarial network, except instead
of one image pairing, a large set of pairs would be needed for training. With
our goal in mind, neither of these are an ideal solution to our problem. Since
we require that images of different styles be generated without the need for a
professional to create an image of a certain style, it is necessary to find a system
that does not require paired data sets.

StarGAN also could have advantages because a one to many mapping would
allow output of several styles easily. However, unlike CycleGAN and DualGAN
there are no checks on the reconstruction loss, so a model might fail to generate
results that strongly correlate to the input. Future work could be done to
see how to combine cycle-consistency loss with StarGAN. A blending of these
systems might prove useful for training a domain mapping, such as portraits,
which would be common for an art studio, to many domains.

For these reasons, an unpaired adversarial network such as DualGAN or
CycleGAN is the best option for our art studio. This can be used to generate
images of different styles as needed, and given a set of images with the desired
style, we can transfer that style to any other image.

One of the biggest advantages of a cycle-consistent adversarial network is its
ability to discriminate what looks like it was derived from the input image and
what does not. Unlike most GANs, CycleGAN or DualGAN insists that the
output corresponds to the input by measuring the cycle-consistency loss. If a
model were to output a translation, the model should also be able to take that
translation and output a result that represents the original input. The difference
between the reverse-translation and the original input is what is described as
the cycle-consistency loss. By aiming to minimize the cycle-consistency with
each epoch, we keep the subject of our image, while changing the style.

Because of the similarity between DualGAN and CycleGAN, both will be
trained on the same unpaired images. We define the relationship A,B where A
and B each describe a specific domain. In the implementation section, we will
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A F (A) G(F (A))

CycleGAN

DualGAN

Figure 2: Example of domain transfer for CycleGAN and DualGAN. Both were
trained on same data sets and the results compared on the same test set. This
is a subset of the images tested upon that represent the overall quantitative
results.

explore models where domain A is a collection of portraits and domain B is a
collection of Van Gogh paintings. We define the mapping between the images
as so:

(A) = B, g(B) = A (4)

To understand the reconstruction loss, or cycle-consistency, it then follows from
(3) that

g(f(A)) ≈ A, f(g(B)) ≈ B (5)

8 Implementation

For training, both the CycleGAN and DualGAN models were trained on the
same data sets. For the training data set, a subset of 400 images from the
CelebA data set [7] were mapped to a collection of 750 Van Gogh paintings
collected off Flicker by Zhu et al. [11]

I believe that from a qualitative measure, CycleGAN is a much stronger
performer based on the images tested. Figure 2 is representative of the two
model’s performance.

8.1 Setup

Both CycleGAN (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
and DualGAN (https://github.com/duxingren14/DualGAN) implementations
written by the paper’s author’s can be found on Github. In this section, I will
explain how to use Google Cloud Platform to train both systems and test images
on the results.
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8.1.1 Google Cloud Platform

Google Cloud Platform is a versatile computing platform that allows us to eas-
ily access powerful computing resources. To begin with Google Cloud Platform
(GCP), we will need to create two Deep Learning Virtual Machines. One re-
quires the Tensorflow 1.13 framework, and another Pytorch 1.1. There are
several implementations available for CycleGAN, and you should feel free to
find the one that you feel is best. All are derivatives of the one we will be using.

Once your two virtual machines are set up, and you are able to SSH onto
them from your local machine, it is recommended that you increase your GPU
quota to have at least 1 GPU for training. Although not required, this will
greatly reduce calculation time. I set up my vm’s to share a single Tesla K80
GPU, and I trained one model at a time.

Now, we have allocated all the resources necessary, we need to set up our
data sets. Both CycleGAN and DualGAN have a set of provided sample data
sets, but for our tests, we want to use the same data set on both systems so we
can compare the results. I used images provided by the authors of CycleGAN,
as well as some images from the CelebA data set [7]. Figure 3 outlines the tree
structure required for each system as well as folder names. It is important to
consider the images you include in your data set. You want to find images that
represent the entirety of your domain as best as possible. So if you want one
domain to be facial portraits, you should not exclusively use pictures of one
person when trying to represent the portrait of anyone. For our tests, 400-700
images were used in both domains.

With data collected, it is time to train the models. This will take significant
time, so it is best to plan accordingly. Even on a powerful compute platform,
it will take several days for each to complete. Refer to each system’s README
file for more information on the necessary command for training and testing.
Take note of the options available upon training. For the tests outlined in this
paper, we set an epoch count of 200 on a single GPU. It is expected that more
epochs will provide diminishing returns on results. Given more time, ideally
several tests would be run at different epoch counts to determine which is best
considering time, cost and benefit of increased epochs.

Compared to training, testing is very quick. Both systems will save check-
points of models so you can test for different iterations. For our problem, we
will most likely be producing output for one image at a time, so the test direc-
tory can be populated with one image in the A directory and any number of
images in the B directory. If we were analyzing the performance of the models,
more images should be used. When it comes time to test, you may want to
adjust options so an reconstruction is not made, because this will not always be
desired, especially for our purposes.

8.2 CycleGAN Results and training time

Training a model over 200 epochs with a batch size of 100 took approximately
74 hours to complete. Some results from several data sets are shown in figure
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Figure 3: The structure of a data set required by each system

4.

8.3 DualGAN results and training time

Training a model over 200 epochs with a batch size of 100 took approximately
63 hours to complete. Some results from several data sets are shown in figure
4.

8.4 Analysis

Qualitatively, the images produced by CycleGAN are generally more represen-
tative of a painting than the ones produced by DualGAN. This statement is
made under the premise that the CycleGAN images have better reduced the
entropy of a photograph into something that could be done by a painter. Colors
are more even, there is less noise, and you can clearly see simulated ”brush
strokes” in the outputted images.

To measure the images qualitatively, we will use the mean squared error
equation and the structured similarity index to calculate the difference between
the model’s reconstructed image and their original. For images, structured
similarity is often considered superior in calculating the perceived difference
of images, while mean squared error is a more straightforward averaged pixel
difference. The equations are defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− y(i, j)]2] (6)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(7)

Where µx is the average of the image x∗, µx is the average of y∗, σ2
x is the

variance of x∗, σ2
y is the variance of y∗, and σxy is the covariance of x and y.
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CycleGAN

A

F(A)

DualGAN

A

F(A)

Figure 4: Example of domain transfer from landscapes → Monetpaintings.
Both were trained on same data sets and the results compared on the same
test set. This is a subset of the images tested upon that represent the overall
quantitative results.

Using a simple python script, we can compare a large set of test images and
return their averaged differences. The results for varying data sets are shown in
figure 5. MSE is calculated as a constant while SSIM is a percent calculation,
where 100% identifies the images as identical. Though DualGAN performs
better with ultimate reconstruction error of the domain transfer F (G(A)), for
MSE, and they perform nearly identically in SSIM , CycleGAN is superior in
producing believable fakes. It has also been mentioned in section (5) that such
a measure is not an accurate way of determining the performance of the model.
Although an essential characteristic of the algorithms that encourages proper
domain transfer, the reconstruction/cycle loss may not properly represent an
algorithm’s performance because in an attempt to reduce this loss, such systems
can create inefficient techniques for ”hiding” information in images to create
precisely accurate reconstructions. Thus, for these two model, mean squared
error may not be a great performance measure, but this should make you wonder
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Portrait → V anGogh Landscape →Monet
CycleGAN (MSE) 852.177 450.103
DualGAN (MSE) 522.102 370.400

CycleGAN (SSIM) 0.883679 0.789487
DualGAN (SSIM) 0.874689 0.8123349

Figure 5: Averaged mean square error and Structural similarity index for do-
main reconstruction F (G(A))

what counteraction can be taken to prevent such steganography.

9 Conclusion and future work

There are a lot of techniques for image-to-image translation, many of them
relying on adversarial networks. I propose an implementation of CycleGAN
over DualGAN and other GANs as a solution to generating artistically styled
images from a reference image because it uses cycle-consistency loss to regulate
context switching when translating over domains, and requires relatively few,
unpaired images to train. It should be noted that although DualGAN seems to
under-perform quantitatively compared to CycleGAN, it was able to train the
same number of epochs in a quarter of the time. This could prove valuable in
some use cases.

9.1 Future work

There are some disadvantages to CycleGAN, including its one-to-one domain
mapping, which is why further research should be done on what results could
be achieved by inter-playing StarGAN with CycleGAN. To improve our output
image, research should be done into techniques to reduce static generated by the
model that serves no other purpose than to make the reconstruction decipher-
able from the output. To further improve results, a shotgun technique, where
several models are trained for a single purpose, each with differing parameters
and data sets can be used to help understand what makes models perform better
for the outlined purpose. To better understand the differences in performance
between DualGAN and CycleGAN, more tests should be performed with differ-
ent domain mappings. Several tests with differing epoch counts will also help
understand the optimal epochs for training a specific data set. This will take
a significant amount of time (weeks to months), but could pay off in the long
run. Lastly, it will eventually be necessary to increase the resolution of the
outputted photos for them to be used for their artistic value. A problem with
this is increasing the resolution exponentially increases the run time, because
step will require significantly more calculations. A solution proposed by [11] is
to use a tiling method to split large images into smaller segments, individually
producing results for each segment. Understanding the output this would cre-
ate, and a clean way to stitch tiles together is an important next step in this
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process.
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